Empirical likelihood inference for a common mean in the presence of heteroscedasticity
نویسندگان
چکیده
The authors develop empirical likelihood (EL) based methods of inference for a common mean using data from several independent but nonhomogeneous populations. For point estimation, they propose a maximum empirical likelihood (MEL) estimator and show that it is √ n -consistent and asymptotically optimal. For confidence intervals, they consider two EL based methods and show that both intervals have approximately correct coverage probabilities under large samples. Finite-sample performances of the MEL estimator and the EL based confidence intervals are evaluated through a simulation study. The results indicate that overall the MEL estimator and the weighted EL confidence interval are superior alternatives to the existing methods. Inférence par la vraisemblance empirique pour une moyenne commune en présence d’hétéroscédasticité Résumé : Les auteurs développent des méthodes d’inférence fondées sur la vraisemblance empirique (VE) pour la moyenne commune de populations indépendantes non-homogènes. Pour l’estimation ponctuelle, ils proposent un estimateur de vraisemblance empirique maximale (VEM) dont ils montrent qu’il est √ nconvergent et asymptotiquement optimal. Pour l’estimation par intervalle, ils considèrent deux méthodes basées sur la VE et montrent que les intervalles correspondants ont à peu près la bonne couverture dans de grands échantillons. Les performances à taille finie de l’estimateur de VEM et des intervalles de confiance de VE sont évaluées par voie de simulation. Les résultats indiquent que globalement, l’estimateur de VEM et l’intervalle de confiance de VE pondéré sont supérieurs aux méthodes existantes.
منابع مشابه
Accurate Inference for the Mean of the Poisson-Exponential Distribution
Although the random sum distribution has been well-studied in probability theory, inference for the mean of such distribution is very limited in the literature. In this paper, two approaches are proposed to obtain inference for the mean of the Poisson-Exponential distribution. Both proposed approaches require the log-likelihood function of the Poisson-Exponential distribution, but the exact for...
متن کاملA MODEL FOR MIXED CONTINUOUS AND DISCRETE RESPONSES WITH POSSIBILITY OF MISSING RESPONSES
A model for missing data in mixed binary and continuous responses, which can be used on cross-sectional data, is presented. In this model response indicator for the binary response can be dependent on the continuous response. A closed form for the likelihood is found. For data with a complicated pattern of missing responses some new residuals are also proposed. The model of multiplicative heter...
متن کاملModified signed log-likelihood test for the coefficient of variation of an inverse Gaussian population
In this paper, we consider the problem of two sided hypothesis testing for the parameter of coefficient of variation of an inverse Gaussian population. An approach used here is the modified signed log-likelihood ratio (MSLR) method which is the modification of traditional signed log-likelihood ratio test. Previous works show that this proposed method has third-order accuracy whereas the traditi...
متن کاملWeighted empirical likelihood inference
A weighted empirical likelihood approach is proposed to take account of the heteroscedastic structure of the data. The resulting weighted empirical likelihood ratio statistic is shown to have a limiting chisquare distribution. A limited simulation study shows that the associated con*dence intervals for a population mean or a regression coe+cient have more accurate coverage probabilities and mor...
متن کاملEmpirical likelihood for heteroscedastic partially linear models
AMS 2000 subject classifications: 62F35 62G20 Keywords: Double robustness Empirical likelihood Heteroscedasticity Kernel estimation Partially linear model Semiparametric efficiency a b s t r a c t We make empirical-likelihood-based inference for the parameters in heteroscedastic partially linear models. Unlike the existing empirical likelihood procedures for heteroscedastic partially linear mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006